

THAILAND

AUTOMOTIVE SUMIT 2016

A part of:

In collaboration with:

B.Eng F. Furter Kistler Instruments frank.furter@kistler.com

22-23 JUNE 2016

BITEC · BANGKOK

measure. analyze. innovate.

Co-organized by:

Content

- Intro & Basics
- Motivation
- Comfort Measurements
- Efficiency Measurements
- Trends
- Summary

22-23 JUNE 2016

measure. analyze. innovate.

1959 foundation of Kistler Switzerland

1500

employees worldwide

57

years of technology know-how

70%

of sales to the automotive industry

56

locations worldwide

A part of:

measure. analyze. innovate.

Measurable physical variables

Force Pressure Torque Acceleration **Electrical pulse** Displacement Speed **KISTLER**

measure. analyze. innovate.

- Compact design results in a stiff structure with high eigenfrequency
- Sensor located as close to the tire contact patch reduces impacts from machine structure and eliminates parasitic losses

22-23 JUNE 2016

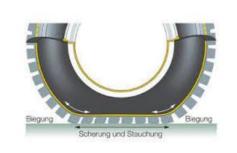
A part of:

Motivation

- Quality
- Performance / Comfort
- Economic → Lifetime, Rolling Resistance
- Safety → braking/ friction
- Fullfil local and global Regulations
- Verification of Tire Models

22-23 JUNE 2016

measure. analyze. innovate.



Application: Comfort measurements

- High speed uniformity HSU
- Flat spot

50

40

30

20 E

125

Speed [km/h]

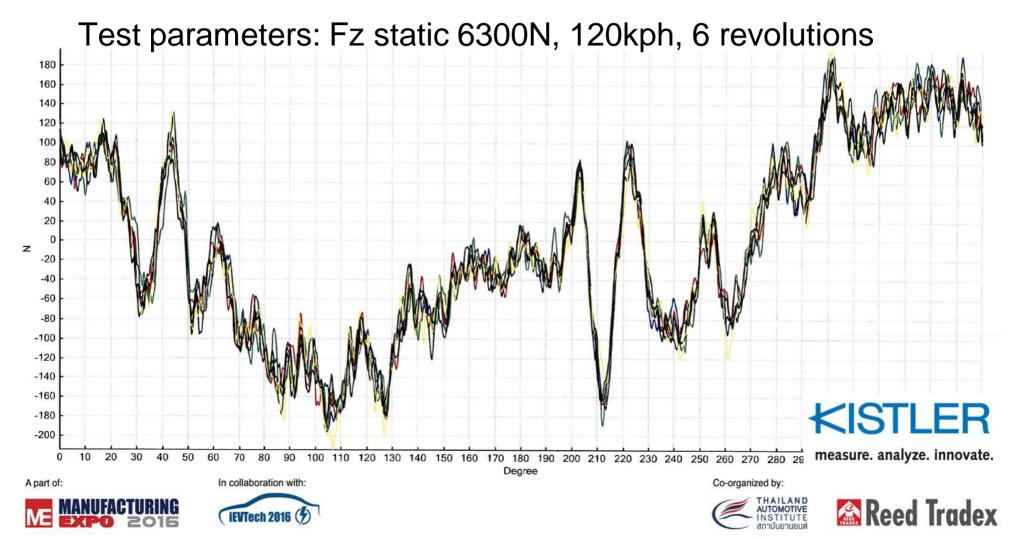
150

measure. analyze. innovate.

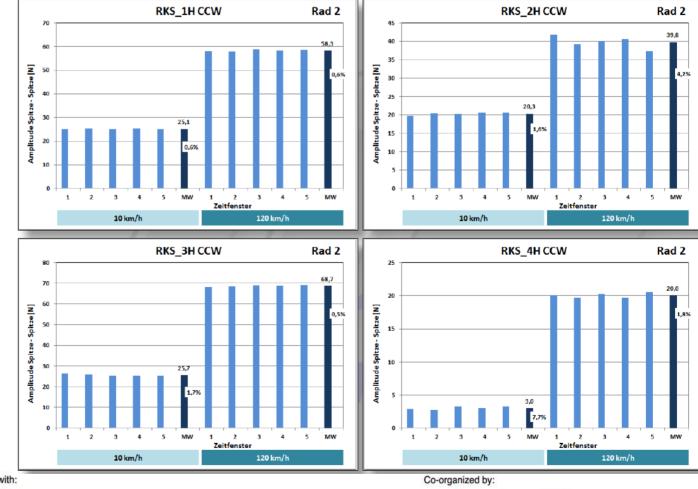
22-23 JUNE 2016 BITEC • BANGKOK

Co-organized by:

75



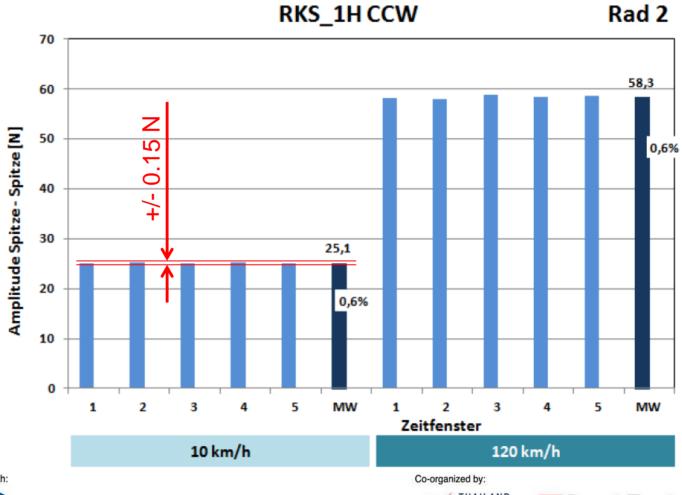
Application: Comfort measurements, HSU, RFV


22-23 JUNE 2016

Application: Comfort measurements, HSU, LFV

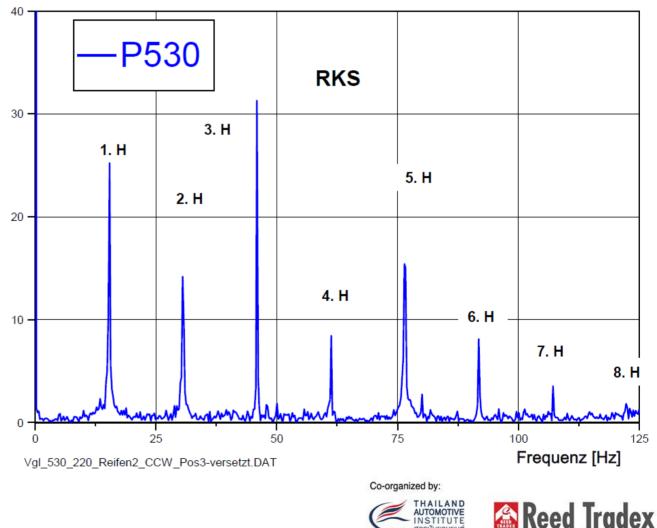
- Fz 4 kN
- Average of 10
 measurements

22-23 JUNE 2016 BITEC • BANGKOK THAILAND



Application: Comfort measurements, HSU

- Fz 4 kN •
- Average of 10 ulletmeasurements
- 25,1N / ±0,6% $= \pm 0.15$ N
- $\rightarrow \pm 0,00375\%$ of 4000N !



22-23 JUNE 2016 BITEC · BANGKOK

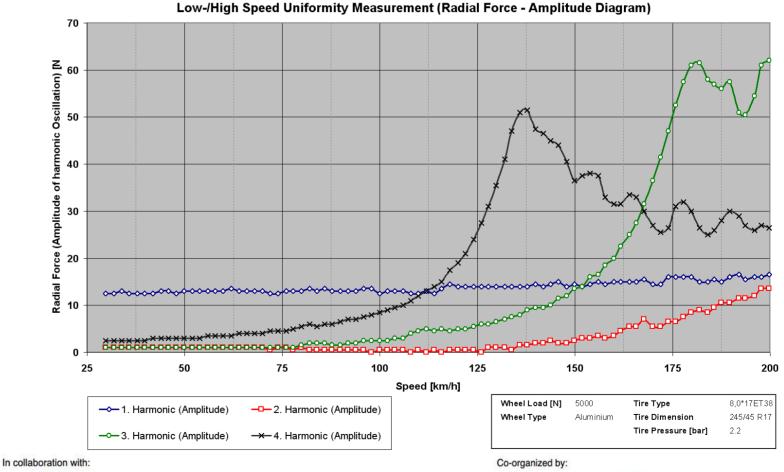
Application: Comfort measurements, HSU, RFV

- Fz 4 kN
- 120 kph ullet

สถาบับยาบยบต่

Source: IPW (2014)

22-23 JUNE 2016 BITEC · BANGKOK



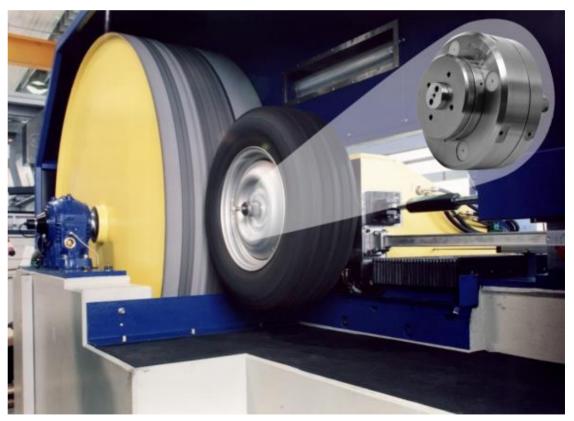
Application: Comfort measurements, HSU, RFV

- Fz 4 kN
- 120 kph

HAILAND

AUTOMOTIVE

สถาบับยาบยบต่


22-23 JUNE 2016

Reed Tradex

HSU Test Stand with piezo based Measuring Hub RoaDyn P530

A part of:

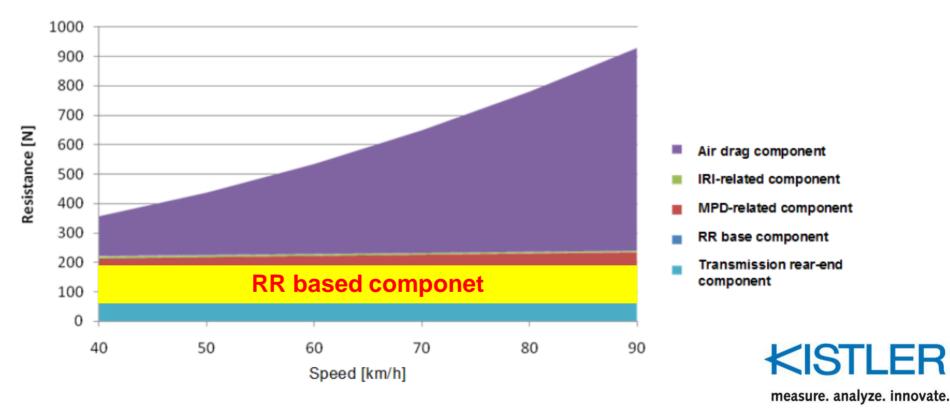
Co-organized by:

22-23 JUNE 2016 BITEC • BANGKOK

- Rolling resistance RR
- Tire wear

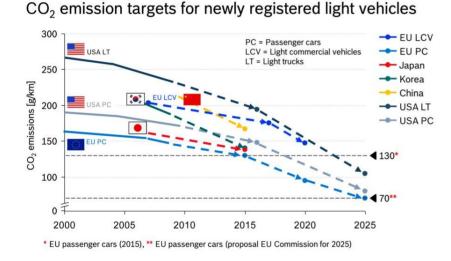
22-23 JUNE 2016

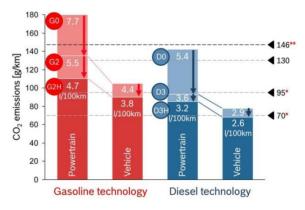
measure. analyze. innovate.



Air and vehicle rolling resistance components for car

A part of:


Co-organized by:



22-23 JUNE 2016 BITEC • BANGKOK

Final CO₂ reduction by vehicle technology

22-23 JUNE 2016 BITEC • BANGKOK

aerodynamic resistance (14 %

Engine technology G0 gasoline, port fuel injection

G2 G0 + DI, downsized, 3 cyl., start/stop, turbo, var. valve

lifting, thermo management

G2H G2 + hybrid (25 kW el. motor) D0 diesel, common rail, turbo

D3 D0 + optimizes combustion, downsized, 3 cylinder,

start/stop, thermo management

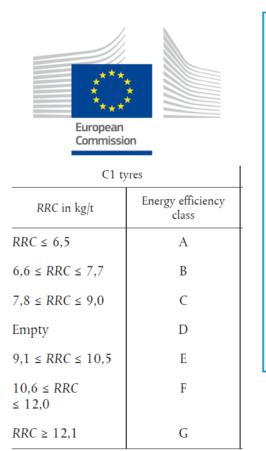
NOx exhaust gas treatment

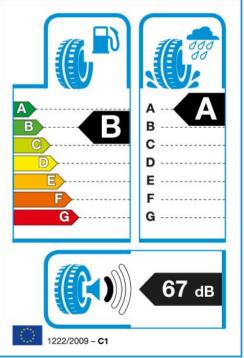
D3H D3 + hybrid (25 kW el. motor)

Vehicle weight 1400 kg, 100 kW, NEDC;

 * Targets proposed by European Commission
 ** EU fleet 2009

measure. analyze. innovate.

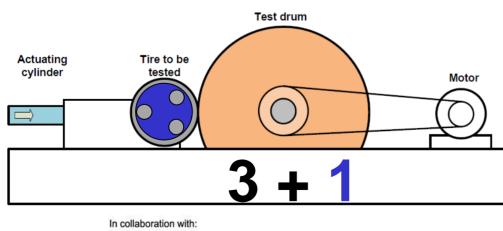




- Wet grip
- Rolling Noise
- Fuel Efficiency

22-23 JUNE 2016

measure. analyze. innovate.



Laboratory methods according ISO 28580

- Deceleration up to standstill
- Electrical **power** for constant drum rotation
- Breaking torque on drum hub
- Resistive force at tire spindle

22-23 JUNE 2016

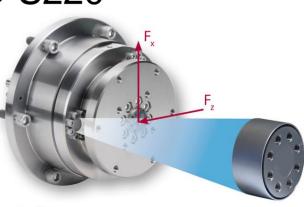
Co-organized by:

Comparison of the methods

- Reference Machine e.g. Tire Manufacturer
- Candidate Machine e.g. OEM
- Round Robin Test
- Min. 10 Tires for Pass. Cars
- > 3 Measurements
- Min. RRC Range 3 N/kN
- Standard Deviation < 0.075 N/kN

Co-organized by:

22-23 JUNE 2016



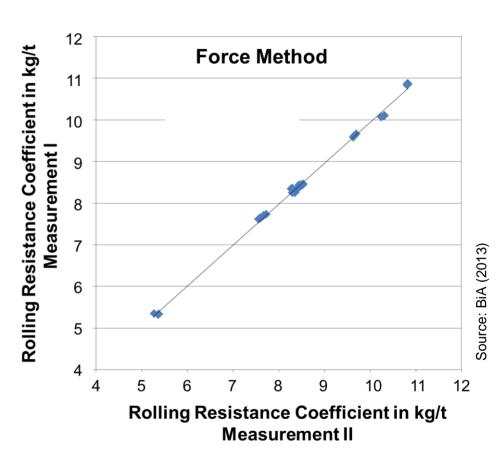
Used sensors

- Torque Method: Non-Contact Torque Meter
 - Loading Range 500 Nm
 - Accuracy 0.01 %
- Speed Controll < 0.1 km/h
- Force Method Measurement: RoaDyn® S220
 - Strain gauge technology
 - Fz 15 kN; Fx \pm 400 N for, 0,5 N/ \pm 0.5%

Co-organized by:

22-23 JUNE 2016

BITEC . BANGKOK



Repeatibility Results

Avg. of Standard Deviation

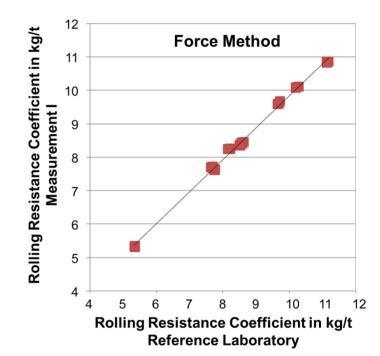
- Deceleration 0.036 N/kN
- 0.022 N/kN Power •
- Torque 0.022 N/kN
- Force 0.019 N/kN •

measure. analyze. innovate.

Co-organized by:

22-23 JUNE 2016 BITEC · BANGKOK

In collaboration with:


Alignment Results

Reference Laboratory

Deceleration method only

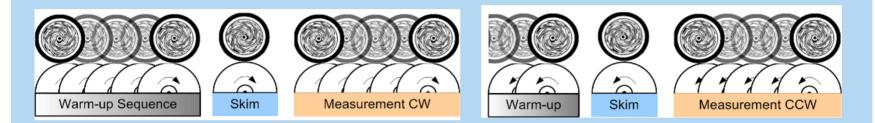
Alignment Target

- Average deviation < 0.5 N/kN
- Correlation coefficient > 0.95

Method	Average Deviation	Correlation Coefficient		
Force	0.10 kg/T	0.997		
Torque	0.21 kg/T	0,998		
Power	0.20 kg/T	0.997		
Deceleration	0.15 kg/T	0.998		

A part of:

Co-organized by:


KISTLER

measure. analyze. innovate.

22-23 JUNE 2016

Performance and repeatabillity check with two position RR test stand (force)

					Station A		Station B	
STEP	Direction	Time	Speed	Load	Tractive	Value-skim	Tractive	[Value-skim]
		[sec]	[km/h]	[kgf]	[kgf]	[kgf]	[kgf]	[kgf]
Warm-Up	CW	1200	80	411.5				
Skim	CW	60	80	9.6	1.09		1.35	
	1 CW	300	80	411.4	5.32	4.23	5.38	4.03
	2 CW	60	80	411.5	5.21	4.12	5.31	3.96
	3 CW	60	80	411.4	5.27	4.18	5.28	3.93
Warm-Up	CCW	300	80	411.6				
Skim	CCW	60	80	9.7	-2.00		-1.53	
Left mounting		Right _		411.5	-6.25	-4.25	-5.98	-4.45
			ounting	411.6	-6.20	-4.20	-5.99	-4.46
× 🛦		\mathbf{i}		411.6	-6.32	-4.32	-5.97	-4.44
- <u>"</u>			h					
Fz ()_{		Fz		Ave. RR	4.22		4.21
					Ave. load	401.85		401.52
I		\checkmark	×		RR/%	1.049%		1.049%

A part of:

Drum

Co-organized by:

22-23 JUNE 2016

BITEC • BANGKOK THAILAND

Trends in Tire Testing

• Tire wear

- Increased demand of measuring equipment for RR according force method
- Truck and bus more and more in focus of wear and RR

22-23 JUNE 2016

Drum

Co-organized by:

Summary

- HSU measurement requires a stiff machine structure •
- Measuring equipment with a high eigenfrequency is a must to \bullet receive truthfull results from highest quality when performing **HSU** measurements
- Due to low impact of parasitic losses, the force method is an • appropriate test method for RR not only for candidate but also for reference machines
- As the RRC ist calculated Fx/Fz, also the repeatibility of Fz is from highest importance
- Kistler provides experienced solutions in the form of measuring \bullet hubs, to support automotive industry in the daily tire testing challanges A part of

Co-organized by:

22-23 JUNE 2016

Reed Tradex

BITEC · BANGKOK

Thank You

KISTLER

measure. analyze. innovate.

Co-organized by:

